
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 1

Denoising Based Multi-Scale Feature Fusion
for Remote Sensing Image Captioning
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Abstract—Benefiting from deep learning technology, it becomes
achievable to generate captions for remote sensing images and
great progress has been made in the recent years. However, the
large scale variation of remote sensing images, which would
lead to errors or omissions in feature extraction, still limits
the further improvement of caption quality. To address this
problem, we propose a denoising based multi-scale feature fusion
(DMSFF) mechanism for remote sensing image captioning in
this paper. The proposed DMSFF mechanism aggregates multi-
scale features with the denoising operation at the stage of visual
feature extraction. It can help the encoder-decoder framework,
which is widely used in image captioning, to obtain the denoising
multi-scale feature representation. In experiments, we apply the
proposed DMSFF in the encoder-decoder framework and per-
form the comparative experiments on two public remote sensing
image captioning data sets including UCM-captions and Sydney-
captions. The experimental results demonstrate the effectiveness
of our method.

Index Terms—remote sensing, image captioning, deep learning,
multi-scale, feature fusion, encoder-decoder

I. INTRODUCTION

W ITH the rapid development of remote sensing equip-
ments and technologies, many applications based on

remote sensing images have developed greatly, including re-
mote sensing scene classification [1], [2], geographical image
retrieval [3] and geographic semantic segmentation [4]. As
well as we know, these tasks mostly concentrate on studying
the visual attributes such as class labels and object loactions,
ignoring their semantic relationship. As a novel and interesting
application, remote sensing image captioning [5]–[7] has been
explored recently. It aims at generating a comprehensive
sentence for a given remote sensing image at the semantic
level, and has the promising potential in the cross-modality
tasks of remote sensing such as image indexing.

Different from the absolutely visiual tasks, image captioning
considers not only the visual attributes but also their text
relationship. In order to achieve this goal, it is necessary
to make full use of both image understanding techniques
and natural language processing techniques. In the past few
years, researchers have proposed many methods for natural
image captioning [8]–[13]. Mostly, these methods obey a
general framework: encoder-decoder architecture. As the name
suggests, this architecture can be divided into two sub-models:
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encoder model and decoder model. Encoder model is used
to extract visual feature at the semantic level, while decoder
model is used to generate a well-formed sentence based on
the extracted feature.

Airplane
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Fig. 1. These two remote sensing images can be described with the same
sentence ”Some airplanes are parking at an airport”. Nevertheless, scale of
the most important object airplane varies widely.

Inspired by natural image captioning, researchers have stud-
ied the caption generation for remote sensing images. Qu et al.
[6] firstly transfer the Encoder-Decoder architecture (CNN +
RNN/LSTM) from natural image captioning to remote sensing
image captioning. Shi et al. [14] propose a multilevel convo-
lutional framework for remote sensing image understanding,
focusing on improving the accuracy of object recognition.
Lu et al. [5] utilize the multimodal feature based methods
and the deep feature based methods at image encoding stage.
Besides, Lu et al. also attempt the soft and hard attention
model to improve the accuracy of captions. Furthermore,
Zhang et al. [7] introduce a multi-scale image cropping and
training mechanism to achieve data augmentation. In remote
sensing image captioning, the classical encoder model includes
AlexNet [15], VGG [16], ResNet [17] and others, while the
decoder model mainly consists of RNN and LSTM. The whole
encoder-decoder framework for remote sensing images is their
cross combination.

Although the exciting progress has been made in remote
sensing image captioning, the large scale variation of remote
sensing images still limits the further improvement of caption
quality. As shown in Fig. 1, remote sensing images are
collected from aerospace equipments, so they usually cover
a large area and contain many types of features and objects,
which are at quite different scales. Due to the various scales,
some features and objects would be ignored or mis-recognized.

In order to improve the ability of multi-scale feature
representation, we propose the denoising based multi-scale
feature fusion (DMSFF) mechanism for remote sensing image
captioning in this paper. It takes effect by aggregating multiple
outputs at different stages of convolutional network, which
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contains the features of different scales. As well as we know,
the shallower the feature is, the more noise it contains. To
reduce the impact of the noise, the denoising operation is
specially designed in consideration of spatial location and
feature channel. It is worth mentioning that the proposed
DMSFF can be embedded into various CNN architectures,
which play the role of encoder model in the whole encoder-
decoder framework.

In conclusion, our contributions can be summarized as the
following three aspects:
(1) To deal with the problem of large scale variation of

remote sensing images, we propose a kind of multi-
scale feature fusion strategy for remote sensing image
captioning in this paper.

(2) In order to reduce the influence of the noise of features
from different layers, we design a denoising operation
considering not only the spatial location but also the
feature channel at different scales.

(3) In order to verify the effectivensess of the proposed
method, comparative experiments are conducted on two
public remote sensing image captioning data sets. The
results demonstrate that our method can help the encoder-
decoder framework to get better caption quality.

II. METHOD

In this section, based on encoder model, the denoising based
multi-scale feature fusion (DMSFF) mechanism is presented
to extract comprehensive visual feature. Following that, the
decoder model is introduced to generate a well-formed sen-
tence.

A. Denoising Based Multi-Scale Feature Representation

Image understanding is a process of extracting features and
objects from images, which is implemented by the encoder
model of encoder-decoder framework. Because of the powerful
feature extraion capability, CNNs has become the mainstream
of encoder model. It can encode a remote sensing image into
a multi-layer feature map.

Usually, only the final feature map is used in the next
decoder stage. However, the scale of remote sensing images
varies widely. The fixed receptive field of the final feature
map cannot deal with the large scale variation. To solve this
problem, as shown in Fig 2, we propose a DMSFF mechanism
to concatenate multiple denoising features of different scales of
CNNs. DMSFF can be roughly diveded into four parts: feature
map selection, spatial-wise denoising, channel-wise denoising
and multi-scale feature fusion.

1) feature map selection: CNN is a stacking structure
of multiple convolutional blocks which can extract features
from shallow to deep. There are many multi-layer feature
maps of different scales at different stages of CNN. It is
the prerequisite of multi-scale feature fusion to select suitable
scales. In this paper, three pieces of multi-layer feature maps
are selected from CNN to be fused as the final multi-scale
feature representation, which are formulated as:

F1 = conv block1(I), (1)

F2 = conv block2(F1), (2)

F3 = conv block3(F2), (3)

here conv block1, conv block2 and conv block3 the three
ordered convolutional blocks of the CNN, and their ordered
combination is the whole feature extractor of a CNN model.
F1 ∈ RH1×W1×C1 , F2 ∈ RH2×W2×C2 and F3 ∈ RH3×W3×C3

are the three selected multi-layer feature maps of different
scales, where H ×W is the spatial size and C is the number
of channels. The detailed settings of the feature maps based
on different CNN architectures are provided in the Sec. III.

It is well known that the multi-layer feature map from the
shallow layer would contain more noise. It is necessary to
denoise the selected feature map. The feature map can be
considered from spatial location (H×W ) and feature channel
(C). The noise is suppressed by the learnable weighting
strategy.

2) spatial-wise denoising: We first reduce the noise of
feature map from spatial locaiton. For each multi-layer feature
map F , the spatial-wise weighting matrix Ws ∈ RH×W is
calculated by:

Ws(i, j) = fs2(fs1(F (i, j))), i ∈ H, j ∈W (4)

here fs is the combination of one fully-connected (FC) layer
and one non-linear activation function. Refering to [18], fs1
reduces the dimension of F from C to C/16 followed by the
function of ReLU, and fs2 shrunk C/16 to 1 followed by
the function of Sigmoid. These two FC layers with non-linear
activation functions can learn the importance of the feature
vector at the position of (i, j).

The learned weighting matrix of Ws is used to weight the
feature map as:

F ′(i, j, k) =Ws(i, j)∗F (i, j, k), i ∈ H, j ∈W,k ∈ C (5)

all of the elements of F ′ are weighted according to the
importance degree at the position of (i, j).

3) channel-wise denoising: Then the feature map is further
denoised along the feature channel. Since the feature at
different positions in the same channel represents the same
semantic information, the weighting operation works in uints
of channel. Therefore, the channele-wise weighting matrix is
actually a vector of 1 x 1 x C, denoted asWc ∈ RC . Motivated
by [18], the k-th element of Wc is calulated by:

Wc(k) =
1

H ×W

H∑
i=0

W∑
j=0

Fc(i, j). (6)

To explore the cross-channel dependence, we use two FC
layers fc1 and fc2 to transform the weighting vector Wc. fc1 ,
followed by a non-linear activation function of RELU, reduces
the dimension of Wc from C to C/16, while fc2 restores
the dimension from C/16 to C. The transformed weighting
matrix is denoted as W̄c ∈ RC . The relationship W̄c and Wc

is represented as:

W̄c = fc2(fc1(Wc)). (7)

.
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The feature map F ′ is weighted again by dot product
operation along the channel, which is calculated by:

F ′′(i, j, k) = W̄c(k)∗F ′(i, j, k), i ∈ H, j ∈W,k ∈ C. (8)

4) multi-scale feature fusion: After Eqn. (4)-(8), we can
obtain the denoised feature map of F ′′. In this paper, only
the feature vector is used for the image generation. Therefore
F ′′ is intergrated into a global feature vector I ∈ RC by
the operation of global average pooling. Element in the k-th
channel of I is calculated by:

I(k) =
1

H ×W

H∑
i=0

W∑
j=0

F ′′(i, j), i ∈ H, j ∈W,k ∈ C (9)

For F1, F2 and F3, there are the corresponding global
feature vectors of I1, I2 and I3, which represents the features
of different scales. They are fused as:

Icat = concat(I1, I2, I3), (10)

If = fcat(Icat), (11)

here Icat ∈ R(C1+C2+C3) is the concatenation of I1, I2 and
I3. For fair comparison, Icat is transformed into If ∈ RC3 by
a FC layer of fcat, which is actually a dimension reduction
operation. The comparative experiments in this paper are
conducted between I3 and If which have the same dimension.

B. LSTM-based Caption Gengration

The demand of caption generation is to generate a well-
formed sentence based on the feature vector of If /I3. The sen-
tence is the summary of features, objects and their relationship
in the given remote sensing image. It is a sequential problem,
so the most popular sequential neural network of Long Short-
Term Memory network (LSTM) [19] is selected to achieve this
goal in this paper. In this sub-section, we introduce the LSTM-
based caption generation and the corresponding loss function
used to optimize the whole encoder-decoder framework.

1) LSTM: LSTM is a chain of repeating the same module
of neural network. The core of LSTM is three gates and
a memory cell. The three gates of forget gate, input gate
and output gate control the LSTM cell state. Each gate can
optionally let information through. The input gate determinds
whether to pass the new input to memory cell, and the forget
gate decides if to forget the current value of cell memory, and
the output gate decides the current output of LSTM according
to the current input and cell state. The update of three gates
and cell memory at timestep t are as follows:

it = σ(Wxixt +Whiht−1 + bi), (12)

ft = σ(Wxfxt +Whfht−1 + bf ), (13)

c̃t = tanh(Wxcxt +Whcht−1 + bi), (14)

ct = ft ∗ ct−1 + it ∗ c̃t, (15)

ot = σ(Wxoxt +Whoht−1 + bo), (16)

ht = ot ∗ tanh(ct), (17)

where it, ft, ct, ot and ht represent the values of input gate,
forget gate, cell memory, output gate and hidden stage at time
t, respectively. And there are two types of non-linear activation
function of sigmoid σ and hyperbolic tangent tanh. All the
weighting matrices W and bias b are the trainable parameters.
At time t, xt is the LSTM’s input while the hidden state of
ht is used as the output.

2) LSTM-based caption generation: The LSTM takes the
concatenation of feature vector (the feature vector is If when
applying DMSFF, and is I3 when using CNN baselines) and
the previous word wt−1 as the input xt. And it generate the
word at the tims step t of yt. They are formulated as follows:

xt = concat(yt−1, I), (18)

ht = LSTM(xt), (19)

yt = fyw(ht), (20)

y = {y1, y2, ..., yN}, yi ∈ RK (21)

r = {r1, r2, ..., rN}, ri ∈ RK (22)

here fyw is a FC layer which embeds ht into the word space.
N is the length of the caption and K is the vocabulary size. In
this paper, N is no bigger than 25. yt and rt are the predicted
word and reference word at time t, respectively. r is the ground
truth of a remote sensing image.

The initialization of LSTM is as follows:

h0 = finit h(I), (23)

c0 = finit c(I), (24)

here finit h and finit c are both the single FC layer. They
untilize the feature vector If /I3 to initialize the hidden state
and cell memory of LSTM.

The loss of image captioning is the sum of negative log
likeihood between the prediction caption of y and the ground
truth caption of r at each time step:

L(y) = −
N∑
t=1

CrossEntroy(yt, rt), (25)

here CrossEntroy is cross entroy loss, which is widely used
in multi-classification task. Such a loss converts the image
captioning into a serialized sclassifcation-like task.

III. EXPERIMENTS

In this section, the image captioning data sets and evaluation
metrics used in this paper are introduced firstly. Then the
experimental settings are presented in detail. Finally we report
the comparative results and analyse the influence of the
proposed DMSFF mechanism when it is applied in remote
sensing image captioning.

A. Data Sets and Evaluation Metrics

Two public remote sensing image captioning data sets are
used in this paper: Sydney-captions [6] and UCM-captions [6].
For each image, there are five sentences describing it. The split
of these two data sets follows the original literature by the ratio
of 80%/10%/10% on training/validation/test.
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Fig. 2. The encoder-decoder architecture with the proposed DMSFF. SD: spatial-wise denoising, CD: channel-wise denoising, MSF: multi-scale feature
feusion.

It is an import issue to evaluate the quality of the generated
captions. There are many evaluation metrics used in image
captioning. In this paper, the following evaluation metrics are
used to comprehensively evaluate the generated captions of
remote sensing images: BLEU1, BLEU2, BLEU3, BLEU4
[20], CIDEr [21] and ROUGE-L [22]. The higher scores of
these metrics mean the better caption quality.

B. Experimental Settings

For the encoder model, comparative experiments are con-
ducted on two widely used CNN architectures of VGG16 [16]
and ResNet18 [17]. All of them are pre-trained on ImageNet
in advance. In VGG16 and Resnet18, f1, f2 and f3 are behind
the 3rd, 4th and 5th max pooling layer, respectively.

In experiments, the images are resized to 224 x 224 and
horizontally flipped with 50% probability. For the decoder
model, the dimension size of word embedding vector is 256,
and the input size of LSTM is the dimension sum of the word
embedding vector and the visual feature vector, and the hidden
state dimension size of LSTM is 256. Adam is selected to
optimize the whole encoder-decoder framework with/without
DMSFF with the learning rate set to 0.0001. All the models
are trained for 50 epochs with the size of mini-batch set to 64.
Our experiments are realized by Pytorch 1.3.1, and conducted
on a computing equipment with 1× NVIDIA GeForce GTX
1080Ti GPU and 64G RAM CPU.

C. Ablation Results and Analysis

To verify the effectiveness of DMSFF, the ablation ex-
periments based on VGG16 and ResNet18 are conducted to
explore the influence of spatial-wise denoising (SD), channel-
wise denoising (CD) and multi-scale fusion (MSF). The results
are provided in Table I and II. According to the results, it could
be found that MSF can help CNN-based encoder to get better
visual features across data sets and feature extractors. On the
basis of the extractor multi-scale features, SD and CD can
further improve their quality with the weighting operation to

(a) There is a white air-
plane parked on the air-
port with some airport
buildings beside.

(b) An industrial area
with many white build-
ings while some roads
go through this area.

(c) There are some run-
ways with white mark-
ing lines on while a river
beside.

Fig. 3. Some caption results of Sydney-captions.

varying degrees. Overall, the best results are achieved by the
combination of MSF, SD and CD (DMSFF). Compared with
the CNN baselines, for the most stable metric of BLEU, their
DMSFF version obtains an average gain of 2.01 in Sydney-
captions and 2.26 in UCM-captions. And for the other metrics,
the score gain is also significant. The results of ablation
experiments demonstrate that the proposed DMSFF can help
CNN feature extractor acquire high-quality multi-scale feature,
some of which may be ignored by the single-scale feature.
There are some caption samples shown in Fig. 3.

We further compare our model with some state-of-the-
art methods. Their results are also listed in I and II.
For Sydney-captions data set, our VGG16 MSFSD+CD and
ResNet18 MSFSD+CD, i.e. the DMSFF version of VGG16
and ResNet18, outperform the others with the significant
advantage. In the experiments of this data set, we find that
the great results benefit from the optimizer of Adam. For
UCM-captions data set, our model outperforms not only
the handcrafted feature of FV-LSTM and VLAD-LSTM [5],
but also single-scale CNN feature of VGG16 and VGG19
[6]. Our ResNet18 MSFSD+CD just slightly fall behinds the
GoogleNet attention [5].

In general, the proposed DSMFF is beneficial for improving
the quality of visual feature and the generated captions across
data sets and CNN architectures.
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TABLE I
COMPARATIVE RESULTS ON SYDNEY-CAPTIONS. ‘ MSF’ REPRESENTS

THE MULTI-SCALE FEATURE FUSION (CONCATENATION), ‘SD’
REPRESENTS THE SPATIAL-WISE DENOISING OPERATION AND ‘CD’

REPRESENTS THE CHANNEL-WISE DENOISING OPERATION.

Models BLEU1 BLEU2 BLEU3 BLEU4 CIDEr ROUGE L

VGG16 80.78 71.99 62.07 55.00 3.0360 0.6831
VGG16 MSF 82.60 72.80 63.23 55.94 3.0586 0.6907
VGG16 MSFSD 82.50 73.73 65.75 58.46 3.1970 0.7194
VGG16 MSFCD 82.31 73.93 65.22 58.61 3.1702 0.7078
VGG16 MSFSD+CD 83.00 74.22 66.48 59.30 3.1817 0.7068

ResNet18 81.45 72.23 62.06 54.17 2.9895 0.6921
ResNet18 MSF 82.52 73.41 63.67 57.28 3.0461 0.7112
ResNet18 MSFSD 82.69 73.24 62.53 55.04 2.9223 0.6981
ResNet18 MSFSD 82.73 73.44 64.74 57.66 3.1366 0.7145
ResNet18 MSFCD+CD 83.24 74.89 65.91 58.51 3.1898 0.7218

VGG16 [6] 54.60 39.50 22.30 21.20 — —
VGG19 [6] 54.80 39.80 22.80 21.50 — —
FV-LSTM [5] 63.31 53.33 47.35 43.03 1.4761 0.5794
VLAD-LSTM [5] 49.12 34.72 27.60 23.14 0.9164 0.4201
GoogleNet attention [5] 76.89 66.13 58.40 51.70 1.9863 0.6842
VAA [23] 74.31 66.46 60.29 54.95 2.4073 0.6999
Sound-f-a [24] 71.55 63.23 54.69 46.60 1.8027 0.6035

TABLE II
COMPARATIVE RESULTS ON UCM-CAPTIONS.

Models BLEU1 BLEU2 BLEU3 BLEU4 CIDEr ROUGE L

VGG16 79.38 71.01 64.30 56.79 3.0143 0.6823
VGG16 MSF 80.01 71.21 64.57 56.42 3.0674 0.6929
VGG16 MSFSD 80.51 71.62 64.73 56.54 3.0725 0.6934
VGG16 MSFCD 81.91 71.83 65.78 58.63 3.1022 0.6981
VGG16 MSFSD+CD 81.39 73.23 66.65 58.82 3.1464 0.7112
ResNet18 80.56 72.51 65.27 57.16 3.1759 0.7013
ResNet18 MSF 81.81 74.60 68.07 59.97 3.2496 0.7198
ResNet18 MSFSD 82.12 75.69 69.45 61.01 3.3357 0.7237
ResNet18 MSFCD 82.33 75.76 69.34 60.45 3.2962 0.7225
ResNet18 MSFSD+CD 83.06 75.98 69.72 63.45 3.2956 0.7318

VGG16 [6] 63.50 53.20 37.50 21.30 — —
VGG19 [6] 63.80 53.60 37.70 21.90 — —
FV-LSTM [5] 58.97 46.68 40.80 36.83 1.8438 0.5595
VLAD-LSTM [5] 70.16 60.85 54.96 50.30 2.3131 0.6520
GoogleNet attention [5] 83.75 76.21 70.42 65.62 3.2001 0.7962
VAA [23] 81.92 75.11 69.27 63.87 3.3946 0.7824
Sound-f-a [24] 78.28 72.76 67.59 63.33 3.2906 0.6864

IV. CONCLUSION

In this paper, we consider the remote sensing image cap-
tioning from the view of multi-scale feature extraction and
fusion with the denoising operaiton. Correspondingly, the de-
noising based multi-scale feature fusion (DMSFF) mechanism
is presented. The proposed DMSFF can be easily embedded
into various CNN architectures and an end-to-end trainable
encoder-decoder framework is further constructed. The pro-
posed DMSFF can help the encoder-decoder framework to
obtain multi-scale feature representation from remote sensing
image and further improve the captioning performance. The
comparative experiments on two public remote sensing image
captioning data sets demomstrate the effectiveness and robust-
ness of the proposed DMSFF.
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